Hepato-toxicological and lipid profile of male Wistar rats following chronic carbamazepine, gabapentin, and carbamazepine-gabapentin adjunctive treatment

Authors

  • O.S. Osuntokun
  • O. O. Oladokun
  • K. I. Adedokun
  • T. G. Atere
  • G. Olayiwola
  • A. O. Ayoka

Keywords:

Anticonvulsants, Carbamazepine, Gabapentin, Carbamazepine-gabapentin, Hepatotoxicity

Abstract

Aim: This study evaluated the hepatotoxicity and lipid profiles of male Wistar rats following chronic carbamazepine (CBZ), gabapentin (GBP) and carbamazepine-gabapentin (CBZ+GBP) adjunctive treatment.   

Methods: Twenty-eight male Wistar rats were randomized into 4 groups (n = 7) to receive daily oral administration of normal saline (0.2ml), or CBZ (25 mg/kg), or GBP (50 mg/kg), or the sub-therapeutic dose of CBZ (12.5 mg/kg) and GBP (25 mg/kg) combination for 56 days. Thereafter, blood and liver homogenate were subjected to biochemical analysis, while liver tissues were processed for the histomorphological investigation. Data were analysed statistically, while p< 0.05 was taken as level of significance.

     


Results: Activities of alanine phosphatase and aspartate aminotransferase significantly increased in the CBZ and CBZ + GBP treated rat. CBZ and CBZ + GBP treatments increased the plasma concentration of low-density lipoprotein and total cholesterol. The liver concentration of malondialdehyde increased significantly in all the treated groups relative to control. There were severe vascular congestions in the liver of the CBZ treated rats, this was moderate in the GBP and CBZ + GBP treated rats.

Conclusion: Chronic use of CBZ may induce hepatotoxicity and lipid profile derangement, GBP and CBZ + GBP adjunctive treatment may be saver than treatment with CBZ.

References

Beghi E., Giussani G, Nichols E., AbdAllah F., Abdela J., Abdelalim A., Abraha H.N., Adib M.G., Agrawal S., Alahdab F., Awasthi A., Ayele Y., Barboza M.A., Belachew A.B., Biadgo B., Bijani A., Bitew ., Carvalho F., Chaiah Y.,

Daryani A., Do H.P., Dubey M., Endries A.Y.Y.,

Eskandarieh S., Faro A., Farzadfar F., Fereshtehnejad S.M., Fernandes E., Fijabi E.O., Filip I., Fischer F., Gebre A.K., Tsadik A.G.,

Gebremichael T.G., Gezae K.E., GhasemiKasman M., Weldegwergs K.G., Degefa M.G.,

Gnedovskaya E.V., Hagos T.B., HajMirzaian A.,

HajMirzaian A., Hassen H.Y., Hay S.I., Jakovljevic M., Kasaeian A., Kassa T.D., Khader Y.S., Khalil I., Khan E.H., Khubchandani J., Kisa A., Krohn K.J., Kulkarni C., Nirayo Y.L., Mackay M.T., Majdan M., Majeed M., Manhertz T., Mehndiratta M.M., Mekonen T., Meles H.G., Mengistu G., Mohammed S., Naghavi M., Mokdad A.H., Mustafa G., Irvani S.S.N., Nguyen

L.H., Nixon M.R., OgboF.A., Olagunju A.T., Olagunju T.O., Owolabi M.O., Phillips M.R., Monsalve G.D.P., Qorbani M., Radfar A., Rafay A., Movaghar F.R., Reinig N., Sachdev P.S., Safari H., Safari S., Sahraian M.A., Samy A.M., Sarvi S., Sawhney M., Shaikh M.A., Sharif M., Singh G., Smith M., Szoeke C.E.I., Seisdedos R.T., Temsah M.H., Temsah O., Girbés M.T.,

Tran B.X., Tsegay A.A.T., Ullah I.,

Venketasubramanian N., Westerman R., Winkler A.S., Yimer E.M., Yonemoto N., Feigin V.L., Vos T and Murray C.J.L (2019). The Lancet Neurology 18: 357–75

Das N., Dhanawat M and Shrivastav S.K (2012). An overview on antiepileptic drugs. Drug Discoveries & Therapeutics 6(4):178-193.

Prisco L., Ganau M., Bigotto F and Zornada F (2011). Trigeminal neuralgia: successful antiepileptic drug combination therapy in three refractory cases. Drug, healthcare and patient safety 3: 43–45.

Olaibi O.K., Osuntokun O.S., Ijomone O.M (2014). Effects of chronic administration of gabapentin and carbamazepine on the histomorphology of the hippocampus and striatum. Annals of Neurosciences 21 (2): 57-61.

Goldenberg M.M (2010). Overview of Drugs Used for Epilepsy and Seizures; Etiology,

Diagnosis, and Treatment. Pharmacy and Therapeutics 35(7): 392–415.

Lang D.G., Wang C.M and Cooper B.R (1993). Lamotrigine, phenytoin, and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. Journal of Pharmacology, Experiment and Therapeutics 266:829–835.

Honarmand A., Safavi M and Zare M (2011). Gabapentin: an update of its pharmacological properties and therapeutic use in epilepsy. Journal of Research in Medical Sciences 16:1062–1069.

Cai K., Nanga R. P. R., Lamprou L., Schinstine C., Eliott M and Hariharan H (2012). The impact of gabapentin administration on brain GABA and glutamate concentrations: a 7T 1H-MRS study. Neuropsychopharmacology 37: 2764–2771

Kammerer M., Rassner M.P., Freiman T.M and Feuerstein TJ (2011). Effects of antiepileptic drugs on GABA release from rat and human neocortical synaptosomes. Naunyn Schmiedebergs Archives of Pharmacology 384:47–57.

Besse A., Wu P., Bruni F., Donti T., Graham B.H.,

Craigen W.J., McFarland R., Moretti P., Lalani S.,

Scott K.L and Taylor R.W (2015). The GABA

Transaminase, ABAT, Is essential for Mitochondria Nucleoside Metabolism. Cell Metabolism 21 (3): 417-427.

Loscher W., Honack D and Taylor C.P (1991). Gabapentin increases aminooxy acetic acidinduced GABA accumulation in several regions of the rat brain. Neuroscience Letter 128:150–154.

Patel R and Dickenson A. H. (2016). Mechanisms of the gabapentinoids and á 2 ä-1 calcium channel subunit in neuropathic pain. Pharmacology research and perspectives 4(2): e00205.

Cassidy JS, Ferron L, Kadurin I, Pratt WS, Dolphin AC (2014). Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary á2ä-1 subunits. Proceedings of National Academics of Sciences of United State of America 111: 8979–8984.

Meyerhoff D.J., Murray D.F., Durazzo T.C and Pennington D.L (2018. Brain GABA and Glutamate Concentrations Following Chronic Gabapentin Administration: A Convenience Sample Studied During Early Abstinence from Alcohol. Frontiers in Psychiatry 9: 1-78.

Al Khalili Y and Jain S (2020). Carbamazepine Toxicity. StatPearls Publishing; 2020 Jan- A v a i l a b l e f r o m :

https://www.ncbi.nlm.nih.gov/books/NBK5078 23. Hussein R.R.S., Soliman R.H., Ali A.M.A.,

/ Tawfeik M.H and Abdelrahim M.E.A (2013).

Osuntokun O.S., Olayiwola G., Oladele A., Ola Effect of antiepileptic drugs on liver enzymes.

I . , Ay o k a A . O ( 2 0 1 7 ) . C h r o n i c Beni-Suef University Journal of Basic and

administration of gabapentin and a gabapentincarbamazepine combination reversibly suppress testicular function in male Wistar rats (Rattus norvegicus). Pathophysiology 24: 63–69.

Martins I.L., Nunes J., Charneira C., Morello J., Pereira S.A., Telo J.P., Marques M.M and Antunes A.M.M (2018). The first-line antiepileptic drug carbamazepine: Reaction with biologically relevant free radicals. Free Radical in Biology and Medicine129:559-568.

Lin YJ, Lee YHP, Ravis WR (2013) Effects of Short-Term Treatment with Recombinant Human

Growth Hormone on Carbamazepine Pharmacokinetics in Rats. Clinical and Experimental Pharmacology 3: 132.

Baydas G, Sonkaya E, Tuzcu M, Yasar A and Donder E (2005). Novel role for gabapentin in neuroprotection of central nervous system in streptozotocine-induced diabetic rats. Acta Pharmaceutica Sinica B 26(4):417-422.

Tsikas D (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry 524: 13-30.

Dassarmaa B., Nand D.K., Gangopadhyay S and Samanta S (2018). Hepatoprotective effect of food preservatives (butylated hydroxyanisole, butylated hydroxytoluene) on carbon tetrachloride-induced hepatotoxicity in rats. Toxicology Reports 5: 31–37.

Kanousil N.L and Gidal B.E (2012). Antiepileptic Drugs. In: Mozayani A., Raymon L. (eds) Handbook of Drug Interactions. Humana Press. Applied Sciences 2 (2013): 14 e1 9.

Lee WM (2003). Drug-induced hepatotoxicity.

New England Journal of Medicine.

(5):474e85.

Bjornsson E (2008). Hepatotoxicity associated with antiepileptic drugs. Acta Neurologica Scandinavica 118(5): 281e90.

Jaber and Al-Bakri, N.A (2018). Tegretol (Carbamazepine) Effect on the Morphometric Assay of Liver in Female White Mice (Mus musculus). Ibn AL- Haitham Journal for Pure and Applied Science 1 (31): 1-9.

Iida A., Sasaki E., Yano A., Tsuneyama K., Fukami T., Nakajima M and Yokoi T (2015). Hepatotoxicity by Carbamazepine Requires

Metabolism in Rats Drug Metabolism and Disposition 43 (7) 958-968

Manimekalai K., Visakan B.., Salwe K.J and Murugesan S (2014). Evaluation of Effect of Antiepileptic Drugs on Serum Lipid Profile among Young Adults with Epilepsy in a Tertiary Care Hospital in Pondicherry. Journal of Clinical and Diagnostic Research 8(8): HC05–HC09.

Mantel-Teeuwisse A.K., Kloosterman J.M., Maitland-van der Zee A.H., Klungel O.H., Porcius A.J, and de- Boer A (2001). DrugInduced lipid changes: a review of the unintended effects of some commonly used drugs on serum lipid levels. Drug safety 24(6):443-456.

Jakubus T., Michalska-Jakubus M., Lukawski K., Janowska A and Czuczwar S.J (2009). Atherosclerotic risk among children taking antiepileptic drugs. Pharmacological reports 61(3):411-423.

Downloads

Published

2023-10-10

How to Cite

Osuntokun, O., Oladokun, O. O., Adedokun, K. I., Atere, T. G., Olayiwola, G., & Ayoka, A. O. (2023). Hepato-toxicological and lipid profile of male Wistar rats following chronic carbamazepine, gabapentin, and carbamazepine-gabapentin adjunctive treatment. Research Journal of Health Sciences, 9(3), 289–298. Retrieved from https://rjhs.org/index.php/home/article/view/292