Moringa oleifera ameliorates cuprizone-induced cerebellar damage in adult female rats

Authors

  • G. O. Omotoso
  • R. E. Kadir
  • S. F. Lewu
  • I. T. Gbadamosi
  • A. A. Akinlolu
  • G. O. Adunmo
  • R. M. Kolo
  • M. O. Lawal
  • M. O. Ameen

Keywords:

demyelination, cuprizone, cerebellar damage, Moringa oleifera, oxidative enzymes

Abstract

Objectives: Cuprizone is a neurotoxicant used in modeling demyelinating disorders. This study explored the effects of Moringa oleifera (MO) on oxidative, histomorphological and behavioural changes in cuprizone-damaged cerebellum.

Methods: Twenty adult female Wistar rats were grouped into 4, each group having five animals. Group A received 1 ml of normal saline (Control); group B received 0.4% cuprizone; group C received 15.6 mg/kgBW Moringa oleifera leaf extract; group D received 0.4% cuprizone and 15.6 mg/kgBW Moringa oleifera, orally for 5 weeks. The animals were assessed for exploratory and locomotor activities, while the cerebellum was processed for histology and assayed for nitric oxide (NO), catalase (CAT) and superoxide dismutase (SOD) activities.

Results: Cuprizone treatment caused weight reduction, disruption of Purkinje cell layer, cellular degeneration, reduction in NO, CAT and SOD activities. However, these changes were ameliorated when co-administered with MO.

Conclusion: The anti-oxidative property of Moringa oleifera is responsible for its ameliorative effect in cuprizone neurotoxicity.

References

Taylor LC, Puranam K, Gilmore W, Ting JPY, Matsushima GK. 17 â-estradiol Protects Male

Mice from Cuprizone-induced Demyelination and Oligodendrocyte Loss. Neurobiol Dis, 2010; 39(2):127–137.

Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathology, 2003; 13: 329–339.

Hiremath MM, Saito Y, Knapp GW, Ting JP,

S u z u k i K , M a t s u s h i m a G K .

Microglia/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol, 1998; 92: 38–49.

Hillis JM, Davies J, Mundim MV, Al-Dalahmah O, Szele FG. Cuprizone demyelination induces a unique inflammatory response in the s u b v e n t r i c u l a r z o n e . J o u r n a l o f Neuroinflammation, 2016; 13(1): 190.

http://doi.org/10.1186/s12974-016-0651-2

Faizi M, Salimi A, Seydi E, Naserzadeh P, Kouhnavard M, Rahimi A, et al. Toxicity of cuprizone a Cu(2+) chelating agent on isolated mouse brain mitochondria: a justification for demyelination and subsequent behavioral dysfunction. Toxicol Mech Methods, 2016; 26(4):276-83.

Schrag M, Mueller C, Oyoyo U, Kirsch WM. Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol, 2011; 94(3):296–306.

Mirona VE, Kuhl mann T, Antelc JP. Cells of the oligodendroglial lineage, myelination, and remyelination. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2011. 1812(2): 184-193.

Garthwaite J, Boulton CL. Nitric oxide signalling in the central nervous system. Ann Rev Physiol, 1995; 57:683–706.

Benetti F, Ventura M, Salmini B, Ceola S, Carbonera D, Mammi S, et al. Cuprizone neurotoxicity, copper deficiency and neurodegeneration. NeuroToxicology, 2010; 31(5):509-17.

Nilsson G. A new colour reaction on copper and ceratin carbonyl compounds. Acta Chem Scand 1950; 4:205-8

Carlton WW. Response of mice to the chelating agents sodium diethyldithiocarbamate, alphabenzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharmacol 1966;8:512-521

Asano M, Wakabayashi T,. Ishikawa K, Kishimoto

H. Mechanism of the formation of megamitochondria by copper-chelating agents. IV. Role of fusion phenomenon in the cuprizoneinduced megamitochondrial formation. Acta Pathol Jpn, 1978; 28:205-213.

Adamo AM, Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, Pasquini JM et al. Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 2006; 198:519-29.

Zatta P, Raso M, Zambenedetti P. Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci 2005; 62:1502–1513.

Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP. Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol, 1998; 88(1-2):45-56.

Murphy MP. How mitochondria produce reactive oxygen species. Biochemical Journal 2009; 417:113.

Aggarwal S, Yurlova L, Simons M. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol 2011; 21(10):585–93.

Abarikwu SO, Pant AB, Farombi EO. 4Hydroxynonenal induces mitochondrial mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells. Basic Clin Pharmacol Toxicol 2012; 110(5):441-8.

French HM, Reid M, Mamontov P, Smmons RA, Grinspan JB. Oxidative stress disrupts oligodendrocyte maturation. J Neurosc Res 2009;87(14):3076-87.

Calabrese M, Mattisi I, Rinaldi F, Favaretto A, Atzori M, Bernardi V. et al. Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis. J Neurol Neurosurg Psychiatry 2010; 81:401-4.

Waxman SG. Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy. Prog Brain Res 2005; 148:353-65.

Wilkins A. Cerebellar Dysfunction in Multiple Sclerosis. Front Neurol 2017; 8: 312. http://doi.org/10.3389/fneur.2017.00312

Fulgie LJ. The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics; Church World Service Dakar 1999; 68.

Nweze NO, Nwafor FI. Phytochemical, proximate and mineral composition ofleaf extracts of Moringa oleifera Lam. from Nsukka, SouthEastern Nigeria. IOSR J.Pharm. Biol. Sci. 2014;9:99–103.

Omotoso GO, Gbadamosi IT, Olajide OJ, DadaHabeeb SO, Arogundade TT, Emmanuel OY.

Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioural disturbances and cerebellar degeneration. Pathophysiology 2018; 25:57–62.

Luqman S, Srivastava S, Kumar R, Maurya AK, Chanda D. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays. Evidence-Based Complementary and Alternative Medicine Volume

0 1 2 ( 2 0 1 2 ) , http://dx.doi.org/10.1155/2012/519084

Sharma V, Paliwal R. Potential Chemoprevention of 7,12-Dimethylbenz[a]anthracene Induced Renal Carcinogenesis by Moringa oleifera Pods and Its Isolated Saponin. Indian J Clin Biochem. 2014; 29(2): 202–209.

Omodanisi EI, Aboua GY, Oguntibeju O. Therapeutic potentials and pharmacological properties of Moringa oleifera Lam in the treatment of diabetes mellitus and related complications. Trop J Pharm Res 2017;16 (7):1737-1746

Dayrit FM, Alcantar AD, Villasenor IM. Studies on Moringa oleifera seeds, Part I: The antibiotic compound and its deactivation in aqueous solution. Philippine Journal of Science 1990; 119:23-32.

Stanford SC. The Open Field Test: Reinventing the

Wheel. J Psychopharmacol 2007;

(2007):134–5.

Steelman AJ, Thompson JP, Li J. Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res. 2012;72(1): 32–42.

Sachs HH, Kathryn K. Bercury KK, Daniela C.

Popescu DC, et al. A New Model of CuprizoneMediated Demyelination/ Remyelination. ASN Neuro. 2014; 6(5): 1759091414551955. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/

Goldberg J, Clarner T, Beyer C, Kipp M. Anatomical distribution of cuprizone-induced lesions in C57BL6mice. J Mol Neurosc 2015; 57(2):166-75. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacol 2007; 15(6):252–259.

Cook HT, Cattell V. Role of nitric oxide in immunemediated diseases. Clinical Science 1996; 91(4): 375–384.

Mahindrakar YS, Thorat AP, Iyer CM. Oxidant and Antioxidant Status in Parkinson's Disease. Indian Medical Gazette 2014:195-202.

Abdel BNA, Zaidi ZF, Fatari JA, Sayed-Ahmed MM, Yakub H. Nitric oxide Pros and Cons: The role of L-arginine a nitric oxide precursor and ideborne, a co-enzyme Q analogue in ameliorating cerebral hypoxia in rat. Brain Res Bull 2010; 83(2): 49-56.

Sheikh A, Yeesmin F, Agarwal S, Rahman M, Islam K. Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice. Asian Pac J Trop Biomed 2014; 4(1):S353-S358.

Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 2003; 62(7):723–732.

Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007; 17(1):38-44.

Downloads

Published

2023-10-07

How to Cite

Omotoso, G. O., Kadir, R. E., Lewu, S. F., Gbadamosi, I. T., Akinlolu, A. A., Adunmo , G. O., Kolo, R. M., Lawal, M. O., & Ameen, M. O. (2023). Moringa oleifera ameliorates cuprizone-induced cerebellar damage in adult female rats. Research Journal of Health Sciences, 6(1), 13–25. Retrieved from https://rjhs.org/index.php/home/article/view/168

Most read articles by the same author(s)